Measuring Fast and Slow Enzyme Kinetics in Stationary Droplets.
نویسندگان
چکیده
We present a new microfluidic platform for the study of enzymtatic reactions using static droplets on demand. This allows us to monitor both fast and slow reactions with the same device and minute amounts of reagents. The droplets are produced and displaced using confinement gradients, which allows the experiments to be performed without having any mean flow of the external phase. Our device is used to produce six different pairs of drops, which are placed side by side in the same microfluidic chamber. A laser pulse is then used to trigger the fusion of each pair, thus initiating a chemcial reaction. Imaging is used to monitor the time evolution of enzymatic reactions. In the case of slow reactions, the reagents are completely mixed before any reaction is detected. This allows us to use standard Michaelis-Menten theory to analyze the time evolution. In the case of fast reactions, the time evolution takes place through a reaction-diffusion process, for which we develop a model that incorporates enzymatic reactions in the reaction terms. The theoretical predictions from this model are then compared to experiments in order to provide measurements of the chemical kinetics. The approach of producing droplets through confinement gradients and analyzing reactions within stationary drops provides an ultralow consumption platform. The physical principles are simple and robust, which suggests that the platform can be automated to reach large throughput analyses of enzymes.
منابع مشابه
Microdroplet fusion mass spectrometry for fast reaction kinetics.
We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a...
متن کاملShear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.
We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 microm in diameter. Ini...
متن کاملProposing a seven-parameter kinetics model for predicting cerussite flotation recovery
Sulfide lead resources are being depleted and the exploitation of carbonate lead deposits is now the main focus of lead mining. Cerussite, PbCO3, is majorly discarded to tailing damps because it is difficult to be processed by flotation in lead concentration units. This paper not only investigates the optimization of cerussite flotation, but it also proposes a model for predict...
متن کاملA slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons.
The timing of voltage-dependent removal of Mg(2+) block of N-methyl-d-aspartate receptors (NMDARs) is potentially critical for determining their nonlinear contribution to excitability. Here, we measure the kinetics of NMDAR unblock in nucleated patch and whole cell recordings of rat cortical pyramidal neurons during depolarizing voltage steps. At room temperature, the unblock showed a very fast...
متن کاملA Slow Fraction of Mg Unblock of NMDA Receptors Limits Their Contribution to Spike Generation in Cortical Pyramidal Neurons
Vargas-Caballero, Mariana and Hugh P. C. Robinson. A slow fraction of Mg unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. J Neurophysiol 89: 2778–2783, 2003; 10.1152/jn.01038.2002. The timing of voltagedependent removal of Mg block of N-methyl-D-aspartate receptors (NMDARs) is potentially critical for determining their nonlinear contribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 87 23 شماره
صفحات -
تاریخ انتشار 2015